Nuclex.Support/Source/AffineThreadPool.Test.cs

353 lines
12 KiB
C#

#region CPL License
/*
Nuclex Framework
Copyright (C) 2002-2010 Nuclex Development Labs
This library is free software; you can redistribute it and/or
modify it under the terms of the IBM Common Public License as
published by the IBM Corporation; either version 1.0 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
IBM Common Public License for more details.
You should have received a copy of the IBM Common Public
License along with this library
*/
#endregion
#if UNITTEST
using System;
using System.Collections.Generic;
using System.Threading;
using NUnit.Framework;
namespace Nuclex.Support {
/// <summary>Unit Test for the CPU core-affine thread pool</summary>
[TestFixture]
public class AffineThreadPoolTest {
#region class TestTask
/// <summary>ThreadPool task that can be used for testing</summary>
private class TestTask : IDisposable {
/// <summary>Initializes a new test task</summary>
public TestTask() {
this.callbackEvent = new ManualResetEvent(false);
}
/// <summary>Immediately releases all resources owned by the instance</summary>
public void Dispose() {
if(this.callbackEvent != null) {
this.callbackEvent.Close();
this.callbackEvent = null;
}
}
/// <summary>Callback that can be added to the thread pool as a task</summary>
/// <param name="state">User defined state</param>
public void Callback(object state) {
this.LastCallbackState = state;
this.callbackEvent.Set();
}
/// <summary>Event that will be set when the callback is executed</summary>
public ManualResetEvent CallbackEvent {
get { return this.callbackEvent; }
}
/// <summary>
/// State parameter that was provide when the callback was called
/// </summary>
public volatile object LastCallbackState;
/// <summary>Event that will be set when the callback is invoked</summary>
private ManualResetEvent callbackEvent;
}
#endregion // class TestTask
#region class WaitTask
/// <summary>ThreadPool task that can be used for testing</summary>
private class WaitTask : IDisposable {
/// <summary>Initializes a new test task</summary>
public WaitTask() {
this.startEvent = new ManualResetEvent(false);
this.finishEvent = new ManualResetEvent(false);
this.waitEvent = new ManualResetEvent(false);
}
/// <summary>Immediately releases all resources owned by the instance</summary>
public void Dispose() {
if(this.waitEvent != null) {
this.waitEvent.Close();
this.waitEvent = null;
}
if(this.finishEvent != null) {
this.finishEvent.Close();
this.finishEvent = null;
}
if(this.startEvent != null) {
this.startEvent.Close();
this.startEvent = null;
}
}
/// <summary>Callback that can be added to the thread pool as a task</summary>
/// <param name="state">User defined state</param>
public void Callback(object state) {
this.LastCallbackState = state;
this.startEvent.Set();
this.waitEvent.WaitOne();
this.finishEvent.Set();
}
/// <summary>Event that will be set when the callback has started</summary>
public ManualResetEvent StartEvent {
get { return this.startEvent; }
}
/// <summary>Event that will be set when the callback has finished</summary>
public ManualResetEvent FinishEvent {
get { return this.finishEvent; }
}
/// <summary>Event that blocks the callback</summary>
public ManualResetEvent WaitEvent {
get { return this.waitEvent; }
}
/// <summary>
/// State parameter that was provide when the callback was called
/// </summary>
public volatile object LastCallbackState;
/// <summary>Event that will be set when the callback has started</summary>
private ManualResetEvent startEvent;
/// <summary>Event that will be set when the callback has finished</summary>
private ManualResetEvent finishEvent;
/// <summary>Event used to block the callback</summary>
private ManualResetEvent waitEvent;
}
#endregion // class WaitTask
#if false
#region class ThrowingDisposable
/// <summary>Throws an exception when it is disposed</summary>
private class ThrowingDisposable : IDisposable {
/// <summary>Immediately releases all resources owned by the instance</summary>
public void Dispose() {
throw new ArithmeticException("Simulated exception for unit testing");
}
}
#endregion // class ThrowingDisposable
/// <summary>
/// Verifies that the Thread Pool's default assertion handler is working
/// </summary>
[Test]
public void TestDefaultAssertionHandler() {
// We can't test a failing assertion because our tests need to run
// unattended on a build server without blocking for user input.
AffineThreadPool.DefaultAssertionHandler(
true, "Unit test", "This should not fail"
);
}
#endif
/// <summary>Tests whether the QueueUserWorkItem() method is working</summary>
[Test]
public void TestQueueUserWorkItem() {
using(TestTask task = new TestTask()) {
AffineThreadPool.QueueUserWorkItem(task.Callback);
Assert.IsTrue(task.CallbackEvent.WaitOne(1000));
}
}
/// <summary>
/// Verifies that the QueueUserWorkItem() method is passing the state parameter
/// on to the callback
/// </summary>
[Test]
public void TestQueueUserWorkItemWithState() {
using(TestTask task = new TestTask()) {
object state = new object();
AffineThreadPool.QueueUserWorkItem(task.Callback, state);
Assert.IsTrue(task.CallbackEvent.WaitOne(1000));
Assert.AreSame(state, task.LastCallbackState);
}
}
/// <summary>
/// Tests whether the thread pool can handle an exception from a user work item
/// </summary>
[Test]
public void TestExceptionFromUserWorkItem() {
using(ManualResetEvent exceptionEvent = new ManualResetEvent(false)) {
AffineThreadPool.ExceptionDelegate oldExceptionHandler =
AffineThreadPool.ExceptionHandler;
AffineThreadPool.ExceptionHandler = delegate(Exception exception) {
exceptionEvent.Set();
};
try {
AffineThreadPool.QueueUserWorkItem(
delegate(object state) { throw new KeyNotFoundException(); }
);
Assert.IsTrue(exceptionEvent.WaitOne(1000));
}
finally {
AffineThreadPool.ExceptionHandler = oldExceptionHandler;
}
}
}
/// <summary>
/// Verifies that the affine thread pool's maximum thread count equals
/// the number of logical processors in the system
/// </summary>
[Test]
public void TestMaxThreadsProperty() {
Assert.AreEqual(Environment.ProcessorCount, AffineThreadPool.MaxThreads);
}
/// <summary>
/// Verifies that the ProcessThread instance for a system thread id can
/// be determined using the GetProcessThread() method
/// </summary>
[Test]
public void CanGetProcessThreadForManagedThread() {
if(Environment.OSVersion.Platform == PlatformID.Win32NT) {
Thread.BeginThreadAffinity();
try {
int threadId = AffineThreadPool.GetCurrentThreadId();
Assert.IsNotNull(AffineThreadPool.GetProcessThread(threadId));
Assert.IsNull(AffineThreadPool.GetProcessThread(0));
}
finally {
Thread.EndThreadAffinity();
}
}
}
/// <summary>
/// Tests whether the afine thread pool's default exception handler works
/// as expected
/// </summary>
[Test]
public void TestDefaultExceptionHandler() {
Assert.Throws<ArrayTypeMismatchException>(
delegate() {
AffineThreadPool.ExceptionHandler(new ArrayTypeMismatchException("Test"));
}
);
}
/// <summary>
/// Verifies that the waiting work items count and active thread count are
/// updated by the thread pool.
/// </summary>
[Test]
public void TestWaitingWorkItemsProperty() {
int eventCount = AffineThreadPool.Processors;
WaitTask[] tasks = new WaitTask[eventCount];
int createdTasks = 0;
try {
// CHECK: Is there danger that the thread pool still has not finished
// queued items for other unit tests, thereby failing to meet
// our expected task counts?
// Create the tasks, counting up the created task counter. If an exception
// occurs, we will roll back from there.
for(createdTasks = 0; createdTasks < eventCount; ++createdTasks) {
tasks[createdTasks] = new WaitTask();
}
// Schedule the blocking tasks in the thread pool so it will not be able
// to process the next task we add to the queue
for(int index = 0; index < eventCount; ++index) {
AffineThreadPool.QueueUserWorkItem(tasks[index].Callback);
}
// Wait for the tasks to start so they aren't preempted by the tasks we're
// going to add (which would finish immediately). The affine thread pool
// works on a first come first serve basis, but we don't want to rely on this
// implementation detail in the unit test.
for(int index = 0; index < eventCount; ++index) {
Assert.IsTrue(
tasks[index].StartEvent.WaitOne(10000),
"Task " + index.ToString() + " was started"
);
}
// All Thread should now be active and no work items should be waiting
Assert.AreEqual(
createdTasks, AffineThreadPool.ActiveThreads,
"ActiveThreads property equals number of tasks"
);
Assert.AreEqual(
0, AffineThreadPool.WaitingWorkItems,
"No waiting work items are in the queue"
);
// Add a task to the queue and make sure the waiting work item count goes up
AffineThreadPool.QueueUserWorkItem(delegate(object state) { });
Assert.AreEqual(
1, AffineThreadPool.WaitingWorkItems,
"Added work item is waiting in the queue"
);
// The same again. Now we should have 2 work items sitting in the queue
AffineThreadPool.QueueUserWorkItem(delegate(object state) { });
Assert.AreEqual(
2, AffineThreadPool.WaitingWorkItems,
"Both added work items are waiting in the queue"
);
// Let the WaitTasks finish so we're not blocking the thread pool any longer
for(int index = 0; index < eventCount; ++index) {
tasks[index].WaitEvent.Set();
}
// Wait for the tasks to end before we get rid of them
for(int index = 0; index < eventCount; ++index) {
Assert.IsTrue(
tasks[index].FinishEvent.WaitOne(1000),
"Task " + index.ToString() + " has finished"
);
}
}
finally {
for(--createdTasks; createdTasks >= 0; --createdTasks) {
tasks[createdTasks].Dispose();
}
}
}
}
} // namespace Nuclex.Support
#endif // UNITTEST